

Dominic Larivière <u>Marie-Ève Lecavalier</u> <u>Charles Labrecque</u> <u>Marie-Eve Delage</u> Claudine Allen Luc Beaulieu

# Colloidal quantum dots for applications in dosimetry and liquid scintillation counting



October 27, 2014









#### What are colloidal quantum dots?





In 1982, Louis E. Brus was the first to discover the properties of CdS nanocrystals. He named them colloidal quantum dots

| Application            | Colloidal quantum dots             |
|------------------------|------------------------------------|
| Electronic devices     | PbS, PbSe, CdSe, CdS,<br>ZnSe      |
| Bioimaging             | CdSe, CdS, ZnS, CdTe, InP,<br>ZnO  |
| Photovoltaic devices   | PbS, PbSe, Graphene                |
| Light-emitting devices | ZnO, CdSe, CdZnSe                  |
| Photodetection devices | PbS, PbSe, CdSe, ZnSe,<br>CdS, ZnS |



Rossetti, R.; Brus, E. L. J. Phys. Chem. 1982, 86, 4470.

# Properties of semi-conductor nanocrystals

- Tunable emission wavelength
- Large absorption band
- Surface can be functionalized
- High electronic density
- Can be water soluble





http://nanocluster.mit.edu/research.php Tyrakowski C.M. and Snee P.T., *Phys.Chem.Chem.Phys.*, **2014**, 16, 837.

## Use in radiation detection

| Type of               | QD system used     | Dispersion    | Emission   | Exposed     | Reference |
|-----------------------|--------------------|---------------|------------|-------------|-----------|
| scintillator          |                    | matrix        | wavelenght | radiation   |           |
| support               |                    |               | (nm)       | type        |           |
| Glass                 | CdSe/ZnS           | Porous glass  | 540        | α           | 1         |
|                       | CdSe/ZnS           | Porous glass  | 510        | γ, α        | 2         |
|                       | ZnS                | Lithiated gel | 380        | ?           | 3         |
| and the second second | CdSe/ZnS           | Lithiated gel | 590        | α           | 3         |
| Polymer               | CdSe/ZnS           | Polystyrene   | 520        | γ, α, X-ray | 4         |
|                       | CdSe/ZnS           | Polystyrene   | 472        | γ, α        | 5         |
|                       | CdTe               | PMMA          | 547        | γ           | 6         |
| 1 <sup>56</sup> - 51  | CdSe-ZnSe          | MEH-PPV       | 550        | β (3 keV)   | 7         |
| Liquid                | CdSe/CdS/CdZnS/ZnS | Hexane/water  | 605        | γ, α        | 8         |
|                       | CdSe/ZnS           | Hexane        | 524        | γ           | 9         |
|                       | CdS + PPO          | Toluene       | 360 - 420  | β           | 10        |
| - 7/                  | CdSe/ZnS           | Hexane        | 579        | γ           | 11        |

Létant, S.E. and T.-F. Wang, Applied Physics Letters, 2006. 88(10) 103110. 2) Létant, S.E. and T.F. Wang, Nano Letters, 2006. 6(12): 2877. 3) Dai, S., et al., AIP Conference Proceedings, 2002. 632(1): 220 4) Park, J.M., et al., Journal of Luminescence, 2014. 146(0): 157. 5) Brown, S.S., A.J. Rondinone, and S. Dai. Applications of Nanoparticles in Scintillation Detectors. in ACS symposium series. 2007. Oxford University Press. 6) Wagner, B.K., et al. Nanocomposites for radiation sensing. 2012. 7) Campbell, I.H. and B.K. Crone, Advanced Materials, 2006. 18(1): 77. 8) Lecavalier, M.E., et al., Chemical Communications, 2013. 49(99): 11629. 9) Stodilka, R.Z., et al., The Journal of Physical Chemistry C, 2009. 113(6): 2580. 10) Winslow, L. and R. Simpson, Journal of Instrumentation, 2012. 7(07): p. P07010. 11) Withers,. Applied Physics Letters, 2008. 93(17): 173101.



## Colloidal quantum dots - initial approach





## cQDs synthesis (SILAR method)



Li, J.J.; Wang, Y.A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M.B.; Peng, X. *J. Am. Chem.Soc.* **2003**, *125*,12567-12575.



## Enhancement of medium interactions



Labrecque, C.; Whitty-Léveillé, L.; Larivière, D. Anal. Chem. 2013, 85, 10549-10555.

Knoll, G.F. in Radiation detection and measurement, III ed.; Zobrist, B., Factor, K., Malinowski, S., Eds.; John Wiley and sons : New Jersey, 2000, p.220-247.



# LSC results





# Gamma irradiation



Lecavalier, M-E.; Goulet, M.; Allen, C.; Beaulieu, L.; Larivière, D. Chem. Commun. 2013, 49, 11629-11631.



#### **Dosimetric applications**





#### Calibration curve of Ra-226





How cQDs might be improved :

- Shorter fluorescence life time (compare to organic fluorophore)
- Higher quantum yield (compare to organic fluorophore)
- Emission in the PMT sensitivity range (compare to current cQDs)



Forseen advantages:

- Emission wavelength in PMT sensitivity range
- High absorption cross section
- Multi-excitation
- Low reabsorption [CdSe]<[CdS]</li>







## **DNPLs Synthesis**



Li, Z.; Peng, X. J. Am. Chem. Soc. 2011, 133, 6578-6586.



#### Characterization





#### Calibration curve of Am-241





## Radionuclides tested

| Radionuclides | Counting efficiency of cQDs | Counting efficiency of<br>DNPLs |  |
|---------------|-----------------------------|---------------------------------|--|
|               | (%)                         | (%)                             |  |
| Am-241        | 28 ± 1                      | 17 ± 5                          |  |
| Am-243        | 35 ± 6                      | 35 ± 16                         |  |
| Th-230        | 23 ± 4                      | 16 ± 9                          |  |



 - cQDs and DNPLs display interesting properties with regards to their possible use as solid scintillators or cocktails for liquid scintillation

 Both semi-conductor nanocrystals display possible applications as dosimeters



## Future work

- Optimization of DNPLs for their use as scintillators
- Characterization of cQDs and DNPLs with X-rays, proton and electron beams
- Determination of other possible matrices (solid)
- Enhancement of the FRET between the solvent and cQDs/DNPLs



## Acknowledgements

Ph.D student : Marie-Ève Lecavalier (chemistry) Marie-Eve Delage (physics)







