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 Material Accountancy (IAEA)
◦ Special Nuclear Material: Pu-239, U-233, and U-

235
◦ Near Real Time Accountancy (NRTA)
◦ Homogenous Samples
◦ Batch Data
 “Source data may include, for example, … element 

concentration, isotopic ratios, relationship between 
volume and manometer readings and relationship 
between plutonium produced and power generated”
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Current Method
 Hybrid K-Edge 

(HKED)
◦ XRF and KED
◦ Very accurate
◦ Only detects 

concentration 

Proposed Method
 Inductively Coupled 

Plasma – Mass 
Spectrometer (ICP-MS)
◦ Very accurate
◦ Detects concentration of 

isotopes
◦ Numerous isobaric 

overlaps for actinides
◦ Need chemistry of 

samples prior to 
analysis
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 Synergistic Effect
◦ The combined species has 

a higher affinity than the 
individual species

 Antagonistic Effect
◦ The combined species has 

a lower affinity than the 
individual species

 Competition Effect
◦ The additional component 

competes with another 
metal for adsorption sites, 
lowering the number of 
available sites
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ORIGIN calculation for mass 
percentages are based on: 

1. 30 MWd/kg M burnup
2. 10 year cool down period
3. 2.9% initial 235U enrichment

Ranked by Mass
Rank Element Percent

1 U 98.43
2 Pu 0.85
3 Nd 0.13
4 Cs 0.13
5 Ce 0.1
6 Tc 0.07
7 Zr 0.07
8 Am 0.06
9 Np 0.04

10 Sr 0.04
11 Rb 0.02
12 Sm 0.02
13 I 0.02
14 Cm 0.01
15 Sn <0.00
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 5M HNO3 loading phase seems highly viable 
since Am and Pu adsorption in 1M HNO3 is 
not considerably affected
◦ Lanthanides and trivalent actinides are expected to 

be found in similar elution fractions
 Working capacity of the resin must be 

determined for DGA based on all trivalent 
metals

 TcO4
- shows a synergistic effect on Am 

adsorption in 1M HCl acid
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 No affects seen from additional components 
in 1M HNO3
◦ Loading characteristics should remain unchanged 

for used fuel
 Molybdenum antagonistic effects most likely 

due to the formation of complex oxyanions
 Overall, UTEVA very selective to tetra- and 

hexavalent metals
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Matrix Constituents Concentrations (M) DGA UTEVA
HNO3 0.035, 0.05, 0.5, 1.0, 5.0, 10.0, 10.57 Am, Cm, Pu Am, Cm, Pu, U
HCl 0.035, 0.05, 0.1, 0.5, 2.0, 5.0, 8.1 Am, Cm, Pu Am, Cm, Pu, U

H2SO4 0.25, 0.5, 0.7, 1, 2, 3, 4 Am, Cm, Pu
HI 0.001, 0.007, 0.015, 0.1, 0.145 Am, Cm, Pu

HBr 0.001, 0.007, 0.015, 0.1, 0.145 Am, Cm, Pu
NaSO4 + 1M HNO3 0.1, 0.5, 1.0, 1.5, 2.0 Am, Cm, Pu
NaSO4 + 1M HCl 0.1, 0.5, 1.0, 1.5, 2.0 Am, Cm, Pu
NaBr + 1M HNO3 0.01, 0.1, 0.5, 1.0, 4.0 Am, Cm, Pu
NaBr + 1M HCl 0.01, 0.1, 0.5, 1.0, 4.0 Am, Cm, Pu

NaNO2 + 1M HNO3 0.001, 0.01, 0.05, 0.1, 0.5 Am, Cm, Pu Am, Pu, U
NaNO2 + 1M HCl 0.001, 0.01, 0.05, 0.1, 0.6 Am, Cm, Pu Am, Pu, U

Ascorbic Acid + 1M HNO3 0.001, 0.01, 0.05, 0.1, 0.3 Am, Cm, Pu Am, Pu, U
Ascorbic Acid + 1M HCl 0.001, 0.01, 0.05, 0.1, 0.3 Am, Cm, Pu Am, Pu, U
Oxalic Acid + 1M HNO3 0.001, 0.01, 0.05, 0.1, 0.3 Am, Cm, Pu Am, Pu, U
Oxalic Acid + 1M HCl 0.001, 0.01, 0.05, 0.1, 0.3 Am, Cm, Pu Am, Pu, U
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1) Load used fuel onto joined columns using 5M HNO3.

2) Rinse columns with 5M HNO3, Pu and U are retained
on UTEVA and Am elutes through to DGA

UTEVA

Pu(IV), 
U(VI)

DGA

Am(III)

1 & 2

UTEVA

Pu(IV), 
U(VI)

3 & 4

DGA

Am(III)

5 & 6
3) Pu(III) Elution:
0.1 M HCl + 0.3M NaNO2

4) U(IV) Elution:
0.1 M HCl + 0.01 M HF

5) Am(III) Elution:
0.1 M HCl. 

6) Strip: 
0.1 M HCl + 0.01 M HF
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% Recovery STD

Am-241 95.01 14.04

Pu-239 95.54 0.06

U-233 97.29 0.68

 Pu and U had sharp 
elution peaks

 Am had broad elution 
from DGA resin
◦ Most likely due to the 

elevated flow rates
 Further broadening 

expected for mock used 
fuel separation
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Ranked by Mass
Rank Element Percent

1 U 98.43
2 Pu 0.85
3 Nd 0.13
4 Cs 0.13
5 Ce 0.1
6 Tc 0.07
7 Zr 0.07
8 Am 0.06
9 Np 0.04

10 Sr 0.04
11 Rb 0.02
12 Sm 0.02
13 I 0.02
14 Cm 0.01
15 Sn <0.00
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% Recovery STD

Am-241 92.68 39.60

Pu-239 99.18 1.65

U-233 103.29 5.27

 Overall, recoveries were 
still high but had large 
deviations

 Some additional 
broadening in Pu elution

 Am elution 
characteristics varied
◦ Most likely due to the 

addition of Tc-99
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 UTEVA worked great
 Scheme 2 is viable and promising
 Replace DGA possibly with another extraction 

chromatography resin
◦ TRU
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 Mixture of glass and 
cement to represent melt 
glass and urban debris

 Typically a 2 gram sample
 Long digestion process
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• Based on literature k’ values 
and experimentally determined 
k’ values

• 10 mL DGA column
• Circled elements analyzed via 

gamma spectroscopy
• Stable elements analyzed via 

ICP-AES
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Al 
(%)

Au 
(%)

Ca 
(%)

Fe 
(%)

Mg 
(%)

Na 
(%)

Ni 
(%)

Ti 
(%)

Mn-54 
(%)

Co-60 
(%)

Sc-46 
(%)

Fraction 1: Load 72.8 0 99.4 0 82.5 33.4 82.3 13.4 14 0 0
Fraction 2: 11 M HCl 0.0 0 0.6 0 0.0 20.5 0.0 0.0 16 0 0
Fraction 3: 11 M HCl 27.2 0 0.0 0 17.5 32.9 17.7 19.8 28 0 0
Fraction 4: 2 M HCl 0.0 0 0.0 0 0.0 13.2 0 66.8 1 78.1 0
Fraction 5: 2 M HCl 0.0 0 0.0 0 0.0 0.0 0 0 4 0 0
Fraction 6: 2 M HCl + 0.3 M Ascorbic Acid 0.0 0 0.0 52.4 0.0 0.0 0 0 5 0 0
Fraction 7: 2 M HCl + 0.3 M Ascorbic Acid 0.0 0 0.0 6.5 0.0 0.0 0 0 0 0 0
Fraction 8: 0.1 M HCl 0.0 0 0.0 41.0 0.0 0.0 0 0 0 0 4
Fraction 9: 0.1 M HCl 0.0 0 0.0 0 0.0 0.0 0 0 0 0 11
Fraction 10: 0.1 M HCl + 0.01 M HF 0.0 0 0.0 0 0.0 0.0 0 0 0 0 67
Fraction 11: 0.1 M HCl + 0.01 M HF 0.0 0 0.0 0 0.0 0.0 0 0 0 0 0
Fraction 12: 0.01 M HNO3 0.0 0 0.0 0 0.0 0.0 0 0 0 0 0
Fraction 13: 0.01 M HNO3 0.0 0 0.0 0 0.0 0.0 0 0 0 0 0

Foils are highlighted in green
Glass Components highlighted in purple
Activation Products highlighted in pink

36



 More work is needed refine larger 
constituents in the glass bead
◦ Include more rinsing 

 Investigate each activation products 
individual elution profile in the complex 
sample matrices

 Optimize column size and elution volumes
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